

The Observing Tool

Şeyma Mercimek

What is the Observing Tool?

- The ALMA Observing Tool (OT) is a Java desktop application used for the preparation and submission of ALMA Phase 1 proposals and, for those which are accepted, Phase 2 materials (Scheduling Blocks).
- Starting to the OT:

< > Almaot-C11-2024	
Name	A Date Modified
> 🚞 _ALMAOT-C11-2024_installation	Today at 17:14
ALMA-OT.command	Today at 17:14
> 🚞 jre	Today at 17:13

Project>>Proposal>>Planned Observing

	ALMA Observing Tool (Cycle 11 (P	hase 2 Patch 1)) - Project			
File Edit View Tool Sea	arch Help	Perspective	•1		
1 D 🗉 🖻 🗛 🗄 🤇	2 O # 72 0 0 0 0 0 V N A	?	File Edit View Tool Sea	arch Help	
Project Structure	< Editors		1 👂 🖻 🖗 🖬 🖉		■ ■ ● ● ▼ K X ≜ ?
Proposal Program	> Spectral Spatial Project		Project Structure	< Editors	
Insubmitted Proposal	Principal Investigator		Proposal Program	> Spectral Spatial	Proposal
		?	Jnsubmitted Proposal	Proposal Information	
> Proposal		Select Pl	Star Formation-Test	Proposal Title	Star Formation-Test
			Planned Observing	Proposal Cycle	2024.1
	Main Project Information	2			Great Proposal
	Project				
	Assigned Priority				
	Project Code None Assigned			Abstract (max, 1200 characte	अन्धे
				D	
				Proposal Type	Regular Target Of Opportunity VI BI
				:	Large Program Phased Array
				Scientific Categor	y
					Cosmology and the High Galaxies and Galactic ISM, star formation and
২ ∧∨?	^				Circumstellar disks.
∧ ∨ Duendeur	••••				exoplanets and the solar Stellar Evolution and the Sun
Jverview					Systemi
	Contextual Help	Phase I: Science Proposal			Low-mass star formation
1. Please en	sure you and your co-Is are registered with the <u>ALMA</u>			Please select one	Pre-stellar cores, Infra-Red Dark Clouds (IRDC)
2. Create a r	new proposal by either:	Science Science Science Proposal		or two keywords	Astrochemistry Inter-Stellar Medium (ISM)/Molecular clouds
Select	ting File > New Proposal				
Clickin Or alia	ing on the Licon in the toolbar	Click on the overview steps to view the contextual help		Student project	
• Or clic 3. Click on t	the proposal tree node and complete the relevant fields	Importing Template Need View		Joint Proposals	
0. Onor of t		And Library More Phase 2 A			le this a Joint Pronceal? Vec No
			٩ • • ?		

Project>>Proposal>>Planned Observing>>Science Case

										_
File Edit View Tool Sea	rch Help								Edit View Tool Search Help	
1 D 🗉 🖻 🖓 🗄 🗛		d 🛛	e 8 0 🗸	K N 🖹 ?						
Project Structure	< Editors								ct Structure Z Editors	
Proposal Program	> Spectral	Spatial P	roposal						posal Program > Spectral Spatial Proposal	
Unsubmitted Proposal									pmitted Proposal	?
V 🖮 Star Formation-Test	Investigator	S							Star Formation-Test Please designed a reviewer who will participate in the distributed review process. The reviewer may be the Pl of the proposal or one of the other investigators A student (without a DHD) may serve as the reviewer only if they are proposal and a metric (without a DHD) is identified	
V Proposal	_							<u>.</u>	Proposal The mentor does not need to be an investigator on the proposal.	
Planned Observing	T)	ype	Full name	Email	Affiliation	ALMA ID	Executive	Reviewer	Planned Observing	
	PI	1	Not set	Not set	Not set	Not set	Non-ALMA		Reviewers are requested to:	
									Abide by the maximum number of Proposal Sets that are to be assigned for review to any individual (refer to the Proposer's Guide for more informati Update their user profiles with combinations of scientific categories and keywords which describe their area(s) of expertise using the new 'Expertise' tab in the link below. Available expertise information will be used in the distribution of proposal assignments. https://asa.alma.cl/UserRegistration/secure/updateAccount.jsp Reviewer has a PhD? No Yes https://asa.alma.cl/UserRegistration/secure/updateAccount.jsp Reviewer has a PhD? No Yes	טר).
				Select PI	Add CoPI A	Add Col Remove Co	ollaborator Add t	from Proposal	Mentor has a PhD? No Yes	
	Reviewer Int	formation							Science Case	
								?	Please ensure that your science case is properly appropriate following instructions on the Science Portal	2
	A studer In	vestigator sea	rch constraints					gators.	rease ensure that your solence user is properly and universe for the order of that	
	The mer	Free'l							Science Case (Mandatory, PDF, 4 pages max.) Template.pdf Attach Detach View	
	Poviowo	Email V	is seyma.mercin	nek@manchester.ac.uk					Duplicate observations	-
	Se	Full	name	Email seyma.mercimek@manche	Atster.a Jodrell Bank C	ffiliation	Find Investigator	formation). vertise'	Briefly justify any new pervations that duplicate archival data or accepted programs. Information regarding the ALMA Duplication Policy and how to search archival data and accepted programs can be found at: https://asa.alma.cl/UserRegistration/secure/updateAccount.jsp	ſ
	^									
Overview										

Proposal template can be downloaded using this:

https://almascience.eso.org/documents-and-tools/proposing/proposal-template

Project>>Proposal>>Planned Observing>>Science Goal

Science Goal has six section to complete.

Project>>Proposal>>Planned Observing>>Science Goal>>General

Project>>Proposal>>Planned Observing>>Science Goal>>Field Setup

1 D 🗉 🖻 🖓 🗄 🖓 🔍 🗟								
Proposal Program	Spectral Spatial Field Setup							
submitted Proposal	Spatial Image	W33A						
Star Formation-Test		? Source						2 -
V Planned Observing		Source Name	W33A	1				Resolve
ScienceGoal (Science Goal)	N N	Choose a Solar System Ob	ject?	Name of object	Unspecified		~	
Field Setup	ee J		Sustan	ICRS V Sexagesima	I			
Spectral Setup			DA DA	display? ✓	Parallax	0.39600	mas	<u> </u>
Calibration Setup		Source Coordinates	RA Doo	18:14:39.0004	PM RA	-0.36000	mas/yr	
Technical Justification			Dec	Resolved by simbad.u-strasbg.fr (SI	PM Dec MBAD)	-2.22000	mas/yr	~
	5 1 1 1 1 H 1 H 1 H 1 H	Source Radial Velocity	0.00	0 km/s \checkmark lsrk	√ z 0.00000000	Doppler Type	RADIO	~
	X I	Target Type	🖲 Ind	ividual Pointing(s) 🔵 1 Rectangular I	Field			
	and the second	Expected Source Propertie	s					
	and the second	1						?
	the second of the second	Pe	ak Continuu	um Flux Density per Synthesized Bear	n 1.00000 J	y ~		
		Co	ontinuum Lii	near Polarization	0.0 pe	r cent		
	the second s	Co	ontinuum Ci	rcular Polarization	0.0 pe	r cent		
		Pe	ak Line Flux	Density per Synthesized Beam	1.00000 J	y ~		
		Lir	ne Width		1.00000 k	m∕s ∨		
		Lir	ne Linear Po	larization	0.0 pe	r cent		
	🕂 🤤 🔲 1x 197,6 1703	8.0	ne Circular F	Polarization	0.0	r cent		
	18:14:37.214, -17:56:53.23 (J2000)	Field Centre Coordinates			0.0	Cont		
	Image Filename /user/.jsky3/cache/jsky168399164703342417	732.fits						? -
	FOV Parameters	Coord Type	Relative	Absolute				
	Bepresentative Frequency (Sky) 0.000 GHz	Array Type	12m					
	Array Type 12m	Offset Onit	arcsec		<u> </u>			
	Antenna Beamsize (HPBW) 0.000 arcsec	#Pointings	12m Array	3				
		***	•••					
erview	Image Server Digitized Sky (Version II) at ESO	\sim						
			Phase	e I: Science Proposal				
	Selecting File > New Proposal	New Science Proposal	Creat Scier Goals	te nce s Validate Science Proposal				
	Clicking on the icon in the toolbar	Click on the	overview ste	eps to view the contextual help				
	Or clicking on this link							
	Click on the proposal tree node and complete t	he relevant fields. And Exporting	Libra	More Help?	2			

If there are desired pointings..

	Line Circular Polarization	0.0 per cent	
eld Cer	ntre Coordinates		
			[?] [-
	Array Type 12m		
	Offset Unit arcsec	\checkmark	
	#Pointings 12m Array 3		
		Des (seeses)	
		Lec [arcsec]	
	20,00000	20,00000	
	30,00000	30,00000	
	Add	elete Reset Import Export	
	Add Da	elete Reset Import Export ort to File Clone Source Delete Source)	Delete All Sources
	Add D	elete Reset Import Export Ort to File Cione Source Delete Source	Delete All Sources
	Add D	elete Reset Import Export	Delete All Sources
	Add D	elete Reset Import Export Ort to File Cione Source Delete Source posal	Delete All Sources
	Add Da Add Source Load from File Expr Phase I: Science Prop Science Coals Create Proposal Create Coals Create Proposal Create Coals Create Proposal Create Coals Create Coals Create Proposal Create Coals Crea	elete Reset Import Export ort to File Clone Source Delete Source posal ate Science Proposal	Delete All Sources
	Add Du Add Source Load from File Expr The Science Proposal Science Proposal Science Proposal Click on the overview steps to view the cr	elete Reset Import Export ort to File Clone Source Delete Source posal ate osal Submit Science Proposal ontextual help	Delete All Sources

Project>>Proposal>>Planned Observing>>Science Goal>>Spectral Setup 1) Single Continuum

Chev Fermanian Test	Speatral To	00						
Itar Formation-Test Proposal Vlanned Observing ScienceGoal (Science Goal)	Spectral Ty	pe			Spectral Type	 Spectral Line Single Continuum Spectral Scan 		
Field Setup					Produce image	e sidebands (Bands 9 and 10 only)		
Calibration Setup					Polarization pr	oducts desired OXX OUAL FULL		
Control and Performance	Spectral Se	tup Errors						
Technical Justification	Single Con	tinuum						
					Ba	colver Pand 6 (211.0.275.0.CHz)		
					ne			
						Reset to Standard Frequency		
	:				Sk	y Frequency 233.00000 GHz V		
					Re	st Frequency 233.027983 GHz		
						 Low spectral resolution (TDM) 		
						High spectral resolution (FDM)		
	Baseband-							
								•
File Edit View Tool Se	arch Help							Perspective 1
Proposal Program		Spectral	Spatial Spectral Set	up.				
Unsubmitted Proposal		opoord	opuna opuna on			High spectral resolution (FDM)		
 Star Formation-Test 		Baseband-1	0.1.5	0.1.5				
Proposal		Fraction	(rest,topo)	Centre Freq (sky,topo)	Transition	Bandwidth, Resolution (smoothed)	Spec. Avg.	Representative Window
 ScienceGoal (\$ 	Science Goal)	1(Full)	224.02690 GHz	224.00000 GHz	Single Continuum	1875.000 MHz(2509 km/s), 31.250 MHz(41.824 km/s) (2-bit)	1	0
iii General								
Spectral Set	tup Satur							
Control and	Performance	Show im	age spectral windows					
Technical Ju	ustification	Baseband-2						
		1(Full)	226.02714 GHz	226.00000 GHz	Single Continuum	1875.000 MHz(2487 km/s), 31.250 MHz(41.454 km/s) (2-bit)	1	0
		Show im	age spectral windows					
		Baseband-3	240.02892.044	240 00000 CHa	Single Continuum	1975 000 Mills (2242 loss/s) 21 250 Mills (20 025 loss/s) (2 bit)	1	0
		T(Pull)	240.02882 GHZ	240.00000 GHz	Single Continuum	1675.000 MHZ(2342 KTUS), 31.250 MHZ(34.056 KTUS) (2-BIT)	1	0
		Show im	ane spectral windows					
		Beechand-4	age spectral windows					
		1(Full)	242.02906 GHz	242.00000 GHz	Single Continuum	1875.000 MHz(2323 km/s), 31.250 MHz(38.713 km/s) (2-bit)	1	•
	1							

observing time and to set the size of the antenna beam shown in the 'Spatial Visual' editor. If the transition you are most interested in does not fall in the centre of the chosen spectral window, its frequency can be changed here. The sky equivalents of the representative frequency are shown in the targets table below.

Project>>Proposal>>Planned Observing>>Science Goal>>Spectral Setup 2) Spectral Line

Perspective File Edit View Tool Search Help Editors Spectral Spatial Spectral Setup Baseband-Centre Fre Star Formation-Test Transitio 📄 Proposa 1(Full) 231.01742 GHz 231.00000 GHz CO v=0 2-1 1875.000 MHz(2433 km/s), 31,250 MHz(40.556 km/s) (2-bit) Planned Observing ScienceGoal (Science Goal) General Field Setup Spectral Setup Calibration Setup Add spectral window centred on a spectral line Add spectral window manually Show image spectral windows Control and Performance Technical Justification 117 188 MHz(152 km/s) 70 557 kHz(0.092 km/s) (2-bit) 1(Eull) 230 53800 GHz 230 52062 GHz CO v=0 2-1 2 Add spectral window centred on a spectral line Add spectral window manually Delete Show image spectral windows Baseband-3 1(Eull) 13CO v=0 2-58,594 MHz(80 km/s), 141,113 kHz(0,192 km/s) (4-bit 220.39868 GH 220.38207 GHz Add spectral window centred on a spectral line Add spectral window manually Show image spectral window Baseband-4 1(Full) 220.32385 GHz CH3CN v=0 12(10)-11(1... 937,500 MHz(1276 km/s), 564,453 kHz(0.768 km/s) (2-b 220 30724 GH

			•				
Ol Search Help	Crea	ate spectral windows centred or	spectral lines				
Transition Filter	Transitions matching your filter settings:						
•	(double-click column header for primary sort, si	ngle-click subsequent columns for sec	condary sorting. Sing	le clicks will reverse s	ort order of already sele	cted columns.)	
e.g. CO*2-1* or *oxide*	Transition *	Description	Rest Frequency A	Sky Frequency	Upper-state Energy	Lovas Intensity Sij µ2	Catalog
Include description	NHD2 5(3,3)0a-5(2,3)0s	Ammonia	211.056848 GHz	211.040934 GHz	237.078 K	4.636 D ²	Offline
	CH3OH v t=0 12(-3,10)-13(2,11)	Methanol	211.095149 GHz	211.079233 GHz	243.738 K	0.021 D ²	Offline
Frequency Filters	Η (48) δ	Hydrogen Recombination Line	211.110278 GHz	211.094360 GHz	0 yK		Offline
ALMA Band	c-C3H 5(1,5)-4(1,4), J=11/2-9/2, F=6-5	Cyclopropenylidyne	211.117576 GHz	211.101658 GHz	29.183 K	1.13 32.461 D ²	Offline
Ψ	c-C3H 5(1,5)-4(1,4), J=11/2-9/2, F=5-4	Cyclopropenylidyne	211.117834 GHz	211.101916 GHz	29.183 K	1.13 26.956 D ²	Offline
1 2 3 4 5 6 7 8 9 10	He (48) δ	Helium Recombination Line	211.196306 GHz	211.180382 GHz	0 уК		Offline
Sky Frequency (GHz)	H2CO 3(1,3)-2(1,2)	Formaldehyde	211.211468 GHz	211.195543 GHz	32.059 K	1.9 43.489 D ²	Offline
0	CH3CN v8=1 J =65-65, K =6-4	Methyl Cyanide	211.272443 GHz	211.256513 GHz	2597.746 K	0.109 D ²	Offline
	CH3CN v8=1 J =26-25, K = -68	Methyl Cyanide	211.368329 GHz	211.352392 GHz	1172.411 K	0.001 D ²	Offline
Min 31.3 0 Max 950 0	CH3CN v8=1 J =18-17, K = -24	Methyl Cyanide	211.407295 GHz	211.391355 GHz	731.742 K	0.005 D ²	Offline
Receiver/Back End Configuration	29SiO v=2 5-4	Silicon Monoxide	211.425983 GHz	211.410042 GHz	3529.75 K	49.218 D ²	Offline
O All lines	H213CO 20(3,17)-21(1,20)	Formaldehyde	211.435562 GHz	211.419620 GHz	825.618 K	0.298 D ²	Offline
Retentially calestable lines	CH3OH v t=1 26(-2,24)-25(-1,24)	Methanol	211.451412 GHz	211.435469 GHz	1175.338 K	3.063 D ²	Offline
· · · · · · · · · · ·	NH2D 19(4,15)0s-18(8,10)0s	Ammonia	211.516970 GHz	211.501022 GHz	3171.339 K	0 D ²	Offline
 Lines in defined spws 	CH3OH v t=0 21(-8,13)-22(-7,15)	Methanol	211.669260 GHz	211.653300 GHz	856.816 K	4.746 D ²	Offline
Filtering unobservable lines	14CO 2-1	Carbon Monoxide	211.738511 GHz	211.722546 GHz	15.242 K	0.025 D ²	Offline
	NH2D 19(16,3)0s-20(14,6)0s	Ammonia	211.768454 GHz	211.752487 GHz	4467.838 K	0 D ²	Offline
Upper-state Energy (K)	NH2D 19(16,4)0s-20(14,7)0s	Ammonia	211.768767 GHz	211.752800 GHz	4467.838 K	0 D ²	Offline
Image: Min 0 ♦ Max 0 ♦	CH3OH v t=1 16(2,15)-15(1,14)	Methanol	211.803245 GHz	211.787275 GHz	613.359 K	0.6 9.09 D ^e	Offline
	30SIO V=0 5-4	Silicon Monoxide	211.853044 GHz	211.837070 GHz	30.503 K	4 47.99 D ²	Offline
Molecule Filter / Environment	13CH3OH V t=0 12(-1,12)-11(2,9)	Methanol	212.020997 GHz	212.005011 GHz	182.107 K	0.04 D ^e	Offline
Show all atoms and molecules	CH3CN V8=1 J =00-00, K =0-4	Methyl Cyanide	212.097951 GHz	212.081959 GHz	2000.975 K	0.114 D ⁴	Offline
	D13C0+ 3-2	Pormynum	212.194490 GHz	212.178491 GHz	20.367 K	43.63 D*	Omine
Can't find the transition you're looking for in the offline pool? Find more in the online Splatalogue.			Add to spectral wind	dow list			
Search Online	Spectral windows in this baseband (maximur	n of four)					
Galaronning	Transition A	Description		Rest Frequenc	v 🛦	Sky Frequency	
Reset Filters		boonprofi		10011104000	,	ony requiries	
neset Filters							
			Remove spectral win	ndow(s)			
						Cancel	Ok
		Evo		/ Help?	/ Stope //	Calica	

Splatalogue.

Adding spectral windows

either manually or from

Selected spectral windows can be seen in the observed frequency range in the chosen ALMA band.

Project>>Proposal>>Planned Observing>>Science Goal>>Spectral Setup 3) Spectral Scan

Spectral Spatial	Spectral Setup	_		
		Spectral Type		 Spectral Line Single Continuum Spectral Scan
		Produce image sideband	ls (Bands 9 and 10) only) 🗌
		Polarization products de	sired	🔿 XX 💿 DUAL 🔵 FULL
Spectral Setup Errors				
Spectral Scan				
		Requested start frequency (sky)	218.00000	GHz V
		Requested end frequency (sky)	250.00000	GHz V
		Requested range (rest)	218.0262 GHz -	250.0300 GHz
		Achieved scan range (sky)	218.0 GHz - 251	.203125 GHz
		Bandwidth, Resolution (Hanning smoothed)	1875.000 MHz(2402 km/s), 31.250 MHz(40.036 km/s) (2-bit) \vee
		Spectral averaging	1	\sim
		Representative frequency (sky)	234.60200	GHz V

The representative frequency defined in the observed frame is used in conjunction with the sensitivity entered on the 'Control and Performance' page to estimate the required observing time and to set the size of the antenna beam shown in the 'Spatial Visual' editor. The representative frequency defaults to the average mid-frequency of the achieved scan range but may be subsequently set by the user to any frequency within the achieved scan range.

	Tuning (Max. 5)	SPW 1 (GHz)	SPW 2 (GHz)	SPW 3 (GHz)	SPW 4 (GHz)
1		218.9375 GHz	220.6406 GHz	234.9375 GHz	236.6406 GHz
2		222.3438 GHz	224.0469 GHz	238.3438 GHz	240.0469 GHz
3		225.7500 GHz	227.4531 GHz	241.7500 GHz	243.4531 GHz
4		229.1563 GHz	230.8594 GHz	245.1563 GHz	246.8594 GHz

Basically specifying frequency range

Project>>Proposal>>Planned Observing>>Science Goal>>Calibration Setup

Project Structure	< Editors
Proposal Program	> Spectral Spatial Calibration Setup
Jnsubmitted Proposal Star Formation-Test Proposal Planned Observing ScienceGoal (Science Goal) General Field Setup Spectral Setup Calibration Setup Control and Performance Technical Justification	Select calibration strategy. Goal Calibrators By default, calibrators will be selected automatically at runtime and a single observation will be used to calibrate the bandpass and flux scale. • System-defined calibration (recommended) • System-defined calibration (force separate amplitude calibration using solar-system object) • User-defined calibration
	Astrometry If you wish positional accuracy that is better than that provided by default (see the Proposer's Guide for more information) then select enhanced accuracy. Standard positional accuracy (default) Enhanced positional accuracy DGC Override (observatory-use only)

Most of the time, the default option is chosen.

However, in the case of increased flux calibration, the second option can be chosen.

Project>>Proposal>>Planned Observing>>Science Goal>>Control and Performance

							Planning	and Time Estimate	
Tors						Note: Th Operatio is longer	e time in brackets is that requi nal requirements often mean to , especially for mosaics. Please	red to reach the sensitivity hat the actual observed tin e see the User Manual for r	ne nore details.
pectral Spatial Control a	and Performance				?	Input Pa Request	rameters ed sensitivity		1000
ntenna Beamsize (1.13 * λ / D)	12m 24.821 arcsec	7m	42.550 arcsec			Represe	ntative frequency (sky, first sou	urce)	234.60
mber of Antennas	12m 43	7m	10	TP 3		Estima	ted Total time for Scien	ce Goal	2.95
	ACA 7m configuration	Most com	pact 12m configur	ation Most extended 12m configu	Iration	Cluster 1			
ngest baseline	0.049 km	0.161 km	n	16.197 km		Source Name	e RA	Dec	Velo
nthesized beamsize	5.377 arcsec	1.364 arc	csec	0.023 arcsec		W33A	18:14:39.5654	-17:52:02.226	36.000 km/s
ortest baseline	0.009 km	0.015 km	n	0.256 km			Dessible Config	wation Combinations	
ximum recoverable scale	28.509 arcsec	12.174 a	Ircsec	0.211 arcsec		12-m (1)	12-m (2)	7-m	T
									Na
esired Performance					?	C-3	None	Yes	NO
sired Performance Desired Angular Resolution Largest Angular Structure in	(Synthesized Beam) (Synthesized Beam) (Synthesized Beam) (1.0)	Single Range 20000 2	e Any Stan arcsec v arcsec v	dalone ACA	2	C-3 Input Parame Precipitable w	None tters ater vapour (all sources)	Yes 1.796mm (5th Octile)	NO
esired Performance Desired Angular Resolution Largest Angular Structure in Desired sensitivity per point	(Synthesized Beam) () S 1.(a source 20.) ing	Single Range 20000 2 2 2 1.00000	e Any Stan arcsec v arcsec v Jy	dalone ACA	2	C-3 Input Parame Precipitable w Time required Time on sourc Total number	None ters ater vapour (all sources) 1 of pointing (first source) of pointing (all sources)	Yes 1.796mm (5th Octile) 52.38 s [0.00 s] 3	NO
esired Performance Desired Angular Resolution Largest Angular Structure in Desired sensitivity per point Bandwidth used for Sensitiv	(Synthesized Beam) () S 1.0 1.0 1.0 20.1 ing vity L	ingle Range 10000 2 1.00000 argestWindowB	e Any Stan arcsec v arcsec v Jy	dalone ACA v equivalent to 22.215 K Frequency Width 1.875000 GHz	2	C-3 Input Parame Precipitable w Time required Time on sourc Total number of tur Total calibratic Total calibratic	None ters ater vapour (all sources) for 12m (1) [C-3] e per pointing (first source) of pointings (all sources) source to fings	Yes 1.796mm (5th Octile) 52.38 s [0.00 s] 3 5 13.10 min [50.90 us] 44.37 min	NO
esired Performance Desired Angular Resolution Largest Angular Structure in Desired sensitivity per point Bandwidth used for Sensitiv Override OT's sensitivity-ba time estimate (must be justif	(Synthesized Beam) () S 1.(1.(20.) ing vity L. sed () N	bingle Range 100000 2 1.00000 argestWindowB	e Any Stan arcsec v arcsec v Jy	dalone ACA v equivalent to 22.215 K Frequency Width 1.875000 GHz	2	C-3 Input Parame Precipitable w Time required Time on sourc Total number Number of tur Total time on s Total calibratic Other overhea Total time for	None ters ater vapour (all sources) to f pointings (all sources) source to f pointings (all sources) to	Yes 1.796mm (5th Octile) 52.38 s [0.00 s] 3 5 13.10 min [50.90 us] 144.37 min 2.42 min 59.88 min	NO
esired Performance Desired Angular Resolution Largest Angular Structure in Desired sensitivity per point Bandwidth used for Sensitiv Override OT's sensitivity-ba time estimate (must be justif Science Goal Breakdown: time estimate, clustering, be	(Synthesized Beam)	single Range 20000 1 1.00000 argestWindowB 'es No anning and Tim	e Any Stan arcsec V arcsec V Jy andWidth V	dalone ACA equivalent to 22.215 K Frequency Width 1.875000 GHz	2	C-3 Input Parame Precipitable w Time required Time on source Total number of tur Total time on s Total calibratic Other overhea Total time for Number of SB Total time to c	None ters ater vapour (all sources) for 12m (1) [C-3] e per pointing (first source) of pointings (all sources) source no time ds 1 SB execution executions complete SB	Yes 1.796mm (5th Octile) 52.38 s [0.00 s] 3 5 13.10 min [50.90 us] 14.37 min 2.42 min 59.88 min 1 59.88 min	NO
esired Performance Desired Angular Resolution Largest Angular Structure in Desired sensitivity per point Bandwidth used for Sensitiv Override OT's sensitivity-ba time estimate (must be justif Science Goal Breakdown: time estimate, clustering, be Simultaneous 12-m and AC	(Synthesized Beam)	ingle Range Roooo I 1.00000 argestWindowB (es No anning and Tim (es No	e Any Stan arcsec V Jy andWidth V	dalone ACA equivalent to 22.215 K Frequency Width 1.875000 GHz	2	C-3 Input Parame Precipitable w Time required Time on sourd Total number Number of tur Total time on s Total calibratic Other overhea Total time for Number of SB Total time to c Calibration Bd	None ters ater vapour (all sources) for 12m (1) [C-3] e per pointing (first source) of pointings (all sources) of pointings (all sources) aource to a the securities of the se	Yes 1.796mm (5th Octile) 52.38 s [0.00 s] 3 5 13.10 min [50.90 us] 14.37 min 2.42 min 59.88 min 1 59.88 min	NO
esired Performance Desired Angular Resolution Largest Angular Structure in Desired sensitivity per point Bandwidth used for Sensitiv Override OT's sensitivity-ba time estimate (must be justif Science Goal Breakdown: time estimate, clustering, be Simultaneous 12-m and AC Are the observations time-cr	(Synthesized Beam)	single Range 20000 1 1.00000 argestWindowB 'es No anning and Tim 'es No 'es No	e Any Stan arcsec V Jy andWidth V	dalone ACA v equivalent to 22.215 K Frequency Width 1.875000 GHz	2	C-3 Input Parame Precipitable w Time required Time on sourd Total number Number of tur Total time on s Total calibratic Other overhea Total time for Number of SB Total time to c Calibration Ba 10 × Phase 2 × Bointine	None ters ater vapour (all sources) to 12 for 12m (1) [C-3] te per pointing (first source) of pointings (all sources) of pointings (all sources) to mime ds texecutions texecu	Yes 1.796mm (5th Octile) 52.38 s [0.00 s] 3 5 13.10 min [50.90 us] 14.37 min 2.42 min 159.88 min 1 59.88 min 5.00 min 4.00 min	NO
esired Performance Desired Angular Resolution Largest Angular Structure in Desired sensitivity per point Bandwidth used for Sensitiv Override OT's sensitivity-ba time estimate (must be justif Science Goal Breakdown: time estimate, clustering, be Simultaneous 12-m and AC Are the observations time-co	(Synthesized Beam) (Synthesized Beam) (1.(1.(1.(20.)))))))))))))))))))	single Range 20000 1 1.00000 argestWindowB 'es No anning and Tim 'es No 'es No	e Any Stan arcsec V Jy andWidth V	dalone ACA equivalent to 22.215 K Frequency Width 1.875000 GHz	2	C-3 Input Parame Precipitable w Time required Time on sourd Total number Number of tur Total time on s Total calibratic Other overhea Total time for Number of SB Total time to c Calibration Ba 10 × Phase 2 × Pointing 5 × Amplitude	None ters ater vapour (all sources) to 12 for 12m (1) [C-3] te per pointing (first source) of pointings (all sources) of pointings (all sources) tings source tds	Yes 1.796mm (5th Octile) 52.38 s [0.00 s] 5 13.10 min [50.90 us] 14.37 min 2.42 min 59.88 min 1 59.88 min 5.00 min 4.00 min 5.00 min	NO

Decide the best observation features related to your scientific content.

The OT will give you details on the estimated observation.

000 mJy

875 GHz 34 602 GH

Close

Angular resolution: -Giving range for the angular resolution can be the best option if you do not need to specify. -Goals for source detection can have "any" option. For extended emission: The source emission when estimating the peak surface brightness.

Project>>Proposal>>Planned Observing>>Science Goal>>Technical Justification and Submit!

Proposal Program	> Spectral Spatial Validate
Proposal Program submitted Proposal Star Formation-Test Proposal Planned Observing General General Field Setup Calibration Setup Control and Performance Technical Justification	Spectral Spatial Validate versions Justification Enter a Technical Justification for this Science Goal, paying special attention to the parameters reproduced below. Sensitivity Requested RMS over 1.875 GHz is 1.00 Jy For a peak flux density of 1.00 Jy , the S/N is 1.0 Achieved RMS over 1.875 GHz is 1.00 Jy For a peak flux density of 1.00 Jy , the S/N is 1.0 Achieved RMS over the total 33203 GHz bandwidth is 60.54 uJy For a continuum flux density of 1.00 Jy , the achieved S/N over 1/3 of the source line width (1000.00 m/s / 3 = 333.33 m/s) is 46.3 Note that one or more of the S/N estimates are < 3. Please double-check the RMS and/or line fluxes entered and/or address the issue below. Line width / bandwidth used for sensitivity (1000.00 m/s / 2396.02 km/s) = 0.0004 Note that the bandwidth used for sensitivity is larger than 1/3 of the linewidth. The S/N achieved for a resolution element that allows the line to be resolved will be lower than that reported. Spectral Dynamic Range (continuum flux / line rms): 46.30 Justify your requested RMS and resulting S/N for the spectral line and/or continuum observations. For line observations also justify the bandwidth used for the sensitivity calculation. Fill all sections]

