
Spectral line imaging & basic analysis
Dan Walker

Imaging ALMA data

UK ALMA Workshop 2025

The University of Manchester

Spectral line imaging
• The process of cleaning line data is broadly similar to cleaning the

continuum, but there are some extra steps and parameters:

• We now have a third dimension (frequency/velocity) made up of
channels, the spacing of which is related to the spectral resolution of
the data

• The emission changes from channel-to-channel, which makes
cleaning and masking more complex

• More data → longer processing time

• The dust continuum level must be subtracted to ensure that we are
imaging only the line emission

A note on continuum subtraction

• The ALMA pipeline can struggle in cases such as

• Broad lines that fill the spectral window

• Extremely line-rich spectra (e.g. ‘hot cores’)

• In these cases there is little true continuum in the spectrum, and a
different approach is needed

• Alternative tools that handle difficult spectra

• STATCONT

• Lumberjack

Continuum subtraction

https://github.com/radio-astro-tools/statcont
https://github.com/adam-avison/LumberJack

A note on continuum subtraction

• The ALMA pipeline can struggle in cases such as

• Broad lines that fill the spectral window

• Extremely line-rich spectra (e.g. ‘hot cores’)

• In these cases there is little true continuum in the spectrum, and a
different approach is needed

• Alternative tools that handle difficult spectra

• STATCONT

• Lumberjack

ALMA Band 6: ’Hot core’ in Galactic centre high-mass star-forming cloud G0.38+0.05

Continuum subtraction

https://github.com/radio-astro-tools/statcont
https://github.com/adam-avison/LumberJack

Continuum subtraction
• In our example data, the line emission is quite simple, so we can manually

identify the continuum channels

• Continuum subtraction can be done after imaging, but it’s generally
recommended to do this beforehand (if feasible)

• Use CASA task uvcontsub to subtract the continuum from the uv data

• The contchans parameter is the same as what we used yesterday for
imaging the continuum

uvcontsub(vis = filename + ’.target’,

 outputvis = filename + ’.target.contsub’,

 fitspec = contchans,

 fitorder = 0)

Cube imaging
• Let’s start by making a dirty image (0 clean iterations), just like we did for the continuum

• We will start by looking only at SPW 0

 tclean(vis = filename + ‘.target.contsub',

 imagename = 'PN_Hb_5.cube.dirty',

 spw = '0',

 specmode = 'cube',

 imsize = [320, 320],

 cell = '0.22arcsec',

 deconvolver = 'hogbom',

 niter = 0,

 weighting = 'briggsbwtaper',

 robust = 0.5,

 gridder = ‘mosaic',

 interactive = False)

• There are two main lines and the rest is blank, so we can restrict the
imaging to just the relevant channel/frequency ranges

• Once again, we want to increase the number of clean iterations, add a
cleaning threshold, and add auto masking parameters …

Cube imaging

• There are two main lines and the rest is blank, so we can restrict the
imaging to just the relevant channel/frequency ranges

• Update start, width, and nchan parameters. E.g. if you want to
image channels 300 - 400, use:

• start = 300, width = 1, nchan = 101

• Once again, we also want to increase the number of clean iterations,
add a cleaning threshold, and add auto masking parameters …

• Update imagename, threshold, niter, usemask

Cube imaging

Cube analysis
• Once you’ve imaged your data, it’s time for analysis!

• Many tools available for image analysis. What you use will depend on
goals & personal preference.

• We will introduce a few tools for basic image analysis in CASA, and
some non-CASA Python packages to get

• Image statistics

• Moment maps (more on this later)

• Extracting and fitting spectra

• Position-velocity maps

followed by a hands-on session to try some of this yourself

Image statistics
CASA implementation

• Use task imstat to get statistics of an image, which are returned as a
dictionary

• Compute stats such as rms, peak, min/max, flux, etc.

• Usage example

stats = imstat(imagename = ‘image’,

 region = ‘region.crtf’,

 chans = ‘100~200’)

stats[‘rms’] # Will print measured RMS

Integrated intensity

(moment 0)

Maximum intensity

(moment 8)

Velocity field

(moment 1)

Moment maps
immoments(imagename = 'PN_Hb_5.spw_0.image',

 moments = [0, 1, 8],

 region = 'moment_region.crtf',

 chans = '420~630',

 includepix = [0.03, 100],

 outfile = 'PN_Hb_5.spw_0.moment')

See documentation for
full definitions

https://casadocs.readthedocs.io/en/stable/api/tt/casatasks.analysis.immoments.html

Integrated intensity

(moment 0)

Maximum intensity

(moment 8)

Velocity field

(moment 1)

Moment maps
immoments(imagename = 'PN_Hb_5.spw_0.image',

 moments = [0, 1, 8],

 region = 'moment_region.crtf',

 chans = '420~630',

 includepix = [0.03, 100],

 outfile = 'PN_Hb_5.spw_0.moment')

See documentation for
full definitions

Try this yourself. You
can use CASA, or do it
interactively in CARTA

https://casadocs.readthedocs.io/en/stable/api/tt/casatasks.analysis.immoments.html

Moment analysis: caveat
• Moment analysis is widely used and is sufficient in many cases

• But if your source is kinematically complex (e.g. many velocity
components), this complexity may be lost and result in poor constraints
on velocity and velocity dispersion

• In such cases, full spectral decomposition — fitting spectra in every
pixel with one or more components — may be desirable

• Tools such as: SCOUSEpy and GaussPy+

• More complicated and time-consuming than moment analysis

https://scousepy.readthedocs.io/en/latest/
https://github.com/mriener/gausspyplus?tab=readme-ov-file

Spectral Cube (Python)

• Toolkit for reading, writing, manipulating, and analysing spectral cube
data

• Create sub-cubes, moments, extract spectra etc.

• Designed to work with very large cubes that are too large to load into
memory

Pyspeckit (Python)

• Analysis toolkit for analysing spectra

• Plotting, line fitting, line modelling, and more

Alternative cube analysis tools

https://spectral-cube.readthedocs.io/en/latest/index.html

Alternative cube analysis tools

Let’s try some basic analyses with and
without CASA tools

Please see the analysis script on the
meeting webpage

Parallel processing (Linux only)
You can run tclean in parallel across multiple cores in order to distribute
the processing and speed things up:

• In tclean, specify the parameter parallel=True

• Place your tclean command in a .py script

• Run your script via:

/path_to_casa/bin/mpicasa -n 8 /path_to_casa/bin/casa --
nologger -c ./imaging_script.py

[You can also place the above command into a .sh script and execute it in
the background]

Number of cores

A note on array combination
• Interferometer uv coverage is incomplete, which leads to spatial filtering

• If your emission is extended and resolved, you will lose information on
certain scales

• ALMA offers main 12m array, 7m ‘compact’ array, and Total Power
(single dish) antennas

• Combining arrays minimises (but does not fully solve) these issues

• Total Power dishes are for line only (not continuum)

• Other non-ALMA data can be combined to fill in uv plane

Why combine the data?
• Interferometer uv coverage is incomplete, which leads to spatial filtering,

flux loss, and image artefacts

• This problem is more pronounced with complex, large scale emission

Source: ALMA Technical Handbook

• Angular resolution is related to the
longest baselines

• Maximum recoverable scale is related
to the shortest baselines

• This is limited by how close you can
physically place antennas

• Note the central hole, sparse
coverage, and non-uniform sampling

https://almascience.eso.org/documents-and-tools/cycle11/alma-technical-handbook

Why combine the data?
• Interferometer uv coverage is incomplete, which leads to spatial filtering,

flux loss, and image artefacts

• Arrays may be combined to minimise these issues, and to achieve high
angular resolution & sensitivity to larger scale structure

Source: Plunkett+ 2023

• Example ALMA 12m, 7m, and TP
overlap in uv space

• Shorter baselines better sampled

• Central hole now filled

• Data can be combined to capture
emission across a greater range of
spatial scales

https://ui.adsabs.harvard.edu/abs/2023PASP..135c4501P/abstract

How to combine the data?
There are two main methods of data combination

• In the visibility domain e.g.:

• 12m data from different array configurations

• 12m + 7m data

• In the image domain e.g.:

• (12m + 7m) + TP

• (12m + 7m) + non-ALMA single dish

though some methods use a mix of these (more on this later)

Joint deconvolution
Combination in the visibility domain for interferometric data is relatively
straightforward. If you have multiple 12m datasets or 12m + 7m* data, you
can either

• Feed all measurement sets (MSs) directly into tclean as a list via the
vis parameter e.g.

tclean(vis = [‘12m_1.ms’, ‘12m_2.ms’, ‘7m.ms’], …)

• Concatenate MSs via the concat task, and use this as the input vis

In general the former is easier. However, if you have many MSs you may
encounter issues due to having too many files open.

*Note that if you are cleaning 12m + 7m data, you must set gridder=‘mosaic’ in
tclean, even for a single pointing (this is related to the different antenna sizes in the arrays)

Single Dish combination
• As noted earlier, Single Dish (SD) data is crucial for filling in the central hole of

the uv plane

• This is particularly important when your source is resolved and contains
extended emission. SD data recovers these large spatial features, along
with the true flux distribution.

• SD data is by definition non-interferometric — we have images not
visibilities

• There are several common methods to combine the SD and interferometric
data, including:

• Feathering

• SDINT (Single Dish INTerferometric) imaging

• Model-Assisted Clean & Feather (MACF)

• TP2VIS (Total Power to VISibilities)

Feathering
Feathering is the simplest approach to SD combination, and is very widely
used. It is implemented in CASA in the feather task, which does the
following:

• Takes a high resolution (interferometric) and a low resolution (SD) image

• Takes a Fourier transform of both and combines them

• Transforms the data back into a combined image

The weighting and flux in the SD imaging can be scaled via the
effdishdiam and sdfactor parameters

There are several preparation steps necessary to ensure feather will
work as expected …

See also the Python package uvcombine for a non-CASA implementation of feathering

https://uvcombine.readthedocs.io/en/latest/

Feathering
Before running feather you should make sure that your SD image has:

• The same units as your interferometric data (likely Jy/beam)

• The same number and order of axes in the header. If the axis order is
different, use task imtrans to re-order.

• A well-defined beam in the header (corresponding to the primary beam
of the SD data)

• (If cube) The same rest frequency in the header, else use the imreframe
task

• (If cube) The same spectral grid, else use the imregrid task*

*In principle feather does regridding, but this doesn’t always work. In this case, regrid prior to feathering.

Feathering
What about feathering two interferometric datasets together?

• In principle this does work. You can take e.g. your ALMA 12m and 7m
images, and feed them into feather as the high and low res images,
respectively

• In general this is not recommended over joint deconvolution as you are
effectively losing information and therefore image fidelity

• This can still be a useful method to obtain a quick look at the combined
interferometric data, just keep caveats in mind and plan to explore joint
deconvolution

12m only 12m + 7m + TP

Galactic centre molecular cloud
HNCO 4-3, single channel

Source: ACES LP, ALMA ID 2021.1.00172.L (PI: S. Longmore)

12m + 7m 12m + 7m + TP

Another Galactic centre molecular cloud
HNCO 4-3, peak intensity

Source: ACES LP, ALMA ID 2021.1.00172.L (PI: S. Longmore)

Galactic centre inner ~ 200 pc
CS (2-1) peak intensity

Sgr A*

12m + 7m + TP

Source: ACES LP, ALMA ID 2021.1.00172.L (PI: S. Longmore)

SCOUSE(py): Semi-automated multi-COmponent Universal
Spectral-line fitting Engine

Available for download: https://scousepy.readthedocs.io/en/latest/

https://scousepy.readthedocs.io/en/latest/

For each averaged spectrum, scousepy provides an initial fit, which the
user cycles through an interactive GUI to either accept or update the fit.

scousepy will then enter the fully automated stage, where it will take these
averaged fits, and pass the parameters to fit the spectrum at every single
pixel within each averaging area.

Henshaw et al. 2019

Henshaw et al. 2020

